Science Library - free educational site

Waste Incinerators

End Disposal Options

A good waste management system will minimise the generation of waste, maximise recycling and other reuse of materials, and separate residual waste for safe disposal, according to type. The options for the final disposal of unusable waste include:

Landfill

Burying waste has been practised for millenia. The modern method involves a lined (plastic or clay) pit, where solid waste is compacted and eventually covered by earth.

Hazardous waste
Landfill pit and lining

When organic material decomposes, it can create two problems: leachate and methane gas. Leachate is a liquid which accumulates at the bottom of the landfill. It has no economic value, and must be siphoned out for special treatment and separate disposal.

Landfill gas is mostly methane, and rises through the waste mound, or may enter escape paths in the ground system around the landfill site. In badly managed landfill sites this has led to explosions and groundwater contamination. Landfill gas can be allowed to escape into the air at non-dangerous concentrations, or, ideally, captured and used as a fuel.

Incineration

Pilot plants in, for example Düsseldorf, Germany, have demonstrated that practically all waste can be incinerated, so that the mass is reduced, energy is recovered, and volatile substances made inert. Gaseous emissions, however, must be controlled. These can be many types, among which persistent organic compounds, such as dioxins, furans and PAHs.

Hazardous waste
Waste-to-Energy waste incinerator, Amsterdam

Other air pollutants which may arise are $NO_x$, $SO_x$, which cause acid rain, CO, ozone, and the greenhouse gas, $CO_2$, as well as some VOCs (although it is reasonable to assume that most organics will be removed by the oxidation process), and particulate matter.

The resulting solid furnace slag, if inert, might find some applications, such as aggregate, or simply landfilled.

Incineration plants which generate electricity from the heat of the process are termed waste-to-energy (WtE).

Recycling

Recycling became popular in the 1980s and 1990s, also because it was a practical and local way to foster public engagement. However, the value of recycling depends greatly on a calculation of the energy needed, and available applications for the recyclable material.

Recycling
Recycling does not come for free

If the alternative raw material is imported great distances, then reclaiming the used material may be advantageous economically. If the material cannot be reused for the original purpose (such as PET), then collecting the material may be a net cost, and the value of the recycling scheme may be more political than economic.

An example of where economic thinking prevails over environmental criteria is New York City, which recently decided to reduce non-economic recycling. The city generates 36,000 tonnes of waste every day, with very low separation rates. New York City now spends c. 1.5 billion dollars a year on collecting and transporting its waste outside its region, with very little investment in local solutions. With federal pressure rising to comply to the minimisation, separation and disposal-at-source principles, this is a policy which has major economic and political liabilities.

The easiest materials to recycle are aluminium, copper, steel, glass, paper. Now, plastics can be more efficiently recycled: PET, polyethylene are two common ones.

Many councils encourage reuse of construction materials, provided they do not contain toxic or banned substances, such as asbestos.

Market prices, such as for copper and aluminium, as well as energy prices, have a significant impact on the level of interest in recycling.

Content © Andrew Bone. All rights reserved. Created : October 5, 2015 Last updated :February 16, 2016

Latest Item on Science Library:

The most recent article is:

Air Resistance and Terminal Velocity

View this item in the topic:

Mechanics

and many more articles in the subject:

Subject of the Week

Physics

Physics is the science of the very small and the very large. Learn about Isaac Newton, who gave us the laws of motion and optics, and Albert Einstein, who explained the relativity of all things, as well as catch up on all the latest news about Physics, on ScienceLibrary.info.

Gravity lens

Great Scientists

John Herschel

1792 - 1871

John Herschel is the son of William Herschel, and the nephew of Caroline Herschel, two famous astronomers. He continued his father's work, publishing enhanced catalogues of astronomical objects, but was also prolific in many other fields of science and technology, notably as a pioneer of photography.

John Herschel
SaraOrdine

Quote of the day...

Read, read, read, read, read, read... if you do not read, you will never make a great film.

ZumGuy Internet Promotions

Renewable energy media services