 # Trigonometric integration

In engineering, rotational action is often translated into lineal action, or vice-versa. Sine, cosine, and tangent, are three trigonometric functions which describe lateral and transverse displacements, and their ratio, as a radius rotates through the circle it describes.  ## Summary of Integral Properties and Solutions

\$∫sin x dx = -cos x + C\$

\$∫cos x dx = sin x + C\$

\$∫sin (ax + b) dx = -1/{a}cos (ax + b) + C\$

\$∫cos (ax + b) dx = 1/{a}sin(ax + b) + C\$

### Trigonometric substitutions

If the integrand contains a quadratic radical expression, these trig substitutions may be used:

\$√(a^2 - x^2)\$ ⇒ \$x = a⋅sin(θ)\$

\$√(x^2 - a^2)\$ ⇒ \$x = a⋅sec(θ)\$

\$√(x^2 + a^2)\$ ⇒ \$x = a⋅tan(θ)\$

f(x)F(x)f(x)F(x)
\$a\$\$ax\$\$x^n\$\${x^{n+1}}/{n+1}\$
\$1/x\$ln|\$x\$|\$1/{x^n}\$\${-1}/{(n-1)x^{n-1}}\$
\$√x\$\${2/3}x√x\$\$1/{√x}\$\$2√x\$
\$1/{x^2+a^2}\$\${1/a}\$arctan\$(x/a)\$\$1/{x^2-a^2}\$\$1/{2a}\$ln\$|{x-a}/{x+b}|\$
\$e^x\$\$e^x\$ln\$(x)\$\$x(\$ln\$(x)-1)\$
\$a^x\$\${a^x}/{ln(a)}\$log\$_a(x)\$\$x(\$log\$_a(x)-\$log\$_a(e))\$
\$xe^{ax}\$\$1/{a^2}(ax-1)e^{ax}\$\$x\$ln\$(ax)\$\${x^2}/4(2\$ln\$(ax)-1)\$
sin\$(x)\$-cos\$(x)\$arcsin\$(x)\$\$x\$arcsin\$(x)+√{1-x^2}\$
cos\$(x)\$sin\$(x)\$arccos\$(x)\$\$x\$arccos\$(x)-√{1-x^2}\$
tan\$(x)\$-ln|cos\$(x)\$|arctan\$(x)\$\$x\$arctan\$(x)-1/2\$ln\$(1+x^2)\$
cot\$(x)\$ln|sin\$(x)\$|arccot\$(x)\$\$x\$arccot\$(x)+1/2\$ln\$(1+x^2)\$
sin\$^2(x)\$\$1/2(x-\$sin\$(x)\$cos\$(x))\$\$1/{sin^2(x)}\$-cot\$(x)\$
cos\$^2(x)\$\$1/2(x+\$sin\$(x)\$cos\$(x))\$\$1/{cos^2(x)}\$tan\$(x)\$
tan\$^2(x)\$tan\$(x)-x\$\$1/{sin(x)}\$ln\$|{1-cos(x)}/{sin(x)}|\$
cot\$^2(x)\$-cot\$(x)-x\$\$1/{cos(x)}\$ln\$|{1+sin(x)}/{cos(x)}|\$
\$1/{1+sin(x)}\$\${-cos(x)}/{1+sin(x)}\$\$1/{1-sin(x)}\$\${cos(x)}/{1-sin(x)}\$
\$1/{1+cos(x)}\$\${sin(x)}/{1+cos(x)}\$\$1/{1-cos(x)}\$\${-sin(x)}/{1-cos(x)}\$
\$x\$sin\$(ax)\$\$-{1/a}x\$cos\$(ax)+1/{a^2}\$sin\$(ax)\$\$x\$cos\$(ax)\$\${1/a}x\$sin\$(ax)+1/{a^2}\$cos\$(ax)\$
\$e^{ax}\$sin\$(bx)\$\${e^{ax}}/{a^2+b^2}(a\$sin\$(bx)-b\$cos\$(bx))\$\$e^{ax}\$cos\$(bx)\$\${e^{ax}}/{a^2+b^2}(a\$cos\$(bx)+b\$sin\$(bx))\$
sinh\$(x)\$cosh\$(x)\$arsinh\$(x)\$\$x\$arsinh\$(x) - √{x^2+1}\$
cosh\$(x)\$sinh\$(x)\$arcosh\$(x)\$\$x\$arcosh\$(x) - √{x^2-1}\$
tanh\$(x)\$ln(cosh\$(x)\$)artanh\$(x)\$\$x\$artanh\$(x) +1/2\$ln\$(1-x^2)\$
coth\$(x)\$ln|sinh\$(x)\$|arcoth\$(x)\$\$x\$arcoth\$(x) +1/2\$ln\$(x^2-1)\$
\$√{x^2+a}\$\$1/2x√{x^2+a} + a/2\$ln\$|x+√{x^2+a}|\$\$1/{√{x^2+a}}\$ln\$|x+√{x^2+a}|\$
\$√{r^2-x^2}\$\$1/2x√{x^2-x^2} + {r^2}/2\$arcsin\$(x/r)\$\$1/{√{r^2-x^2}}\$arcsin\$(x/r)\$

## Site Index

### Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

### Mathematics

Mathematics is the most important tool of science. The quest to understand the world and the universe using mathematics is as old as civilisation, and has led to the science and technology of today. Learn about the techniques and history of mathematics on ScienceLibrary.info. ### Great Scientists

#### Paul Dirac

1902 - 1984

Paul Dirac is a leading figure in 20th century physics. His Dirac Equation describes fermions and predicted the existence of anti-matter, winning him a Nobel Prize in 1933.  ### Quote of the day... "I knew Descartes," said Isaac Barrow. "René', I used to say. 'Have you got des cartes?' Then after a few tankards, he would say: 'Don't try to cheat me, Wheelie-boy. Cogito ergo sum...' - that's classical pidgin for 'I can think so I can add up as well as the next man'." 