Science Library - free educational site

Trigonometric integration

In engineering, rotational action is often translated into lineal action, or vice-versa. Sine, cosine, and tangent, are three trigonometric functions which describe lateral and transverse displacements, and their ratio, as a radius rotates through the circle it describes.

Basic trig identities
Mathematics question

Summary of Integral Properties and Solutions

$∫sin x dx = -cos x + C$

$∫cos x dx = sin x + C$

$∫sin (ax + b) dx = -1/{a}cos (ax + b) + C$

$∫cos (ax + b) dx = 1/{a}sin(ax + b) + C$

Trigonometric substitutions

If the integrand contains a quadratic radical expression, these trig substitutions may be used:

$√(a^2 - x^2)$ ⇒ $x = a⋅sin(θ)$

$√(x^2 - a^2)$ ⇒ $x = a⋅sec(θ)$

$√(x^2 + a^2)$ ⇒ $x = a⋅tan(θ)$

f(x)F(x)f(x)F(x)
$a$$ax$$x^n$${x^{n+1}}/{n+1}$
$1/x$ln|$x$|$1/{x^n}$${-1}/{(n-1)x^{n-1}}$
$√x$${2/3}x√x$$1/{√x}$$2√x$
$1/{(x-a)(x-b)}$${1/{a-b}}$ln$|{x-a}/{x-b}|$${ax+b}/{cx+d}$${ax}/c-{ad-bc}/{c^2}$ln$|cx+d|$
$1/{x^2+a^2}$${1/a}$arctan$(x/a)$$1/{x^2-a^2}$$1/{2a}$ln$|{x-a}/{x+b}|$
$e^x$$e^x$ln$(x)$$x($ln$(x)-1)$
$a^x$${a^x}/{ln(a)}$log$_a(x)$$x($log$_a(x)-$log$_a(e))$
$xe^{ax}$$1/{a^2}(ax-1)e^{ax}$$x$ln$(ax)$${x^2}/4(2$ln$(ax)-1)$
sin$(x)$-cos$(x)$arcsin$(x)$$x$arcsin$(x)+√{1-x^2}$
cos$(x)$sin$(x)$arccos$(x)$$x$arccos$(x)-√{1-x^2}$
tan$(x)$-ln|cos$(x)$|arctan$(x)$$x$arctan$(x)-1/2$ln$(1+x^2)$
cot$(x)$ln|sin$(x)$|arccot$(x)$$x$arccot$(x)+1/2$ln$(1+x^2)$
sin$^2(x)$$1/2(x-$sin$(x)$cos$(x))$$1/{sin^2(x)}$-cot$(x)$
cos$^2(x)$$1/2(x+$sin$(x)$cos$(x))$$1/{cos^2(x)}$tan$(x)$
tan$^2(x)$tan$(x)-x$$1/{sin(x)}$ln$|{1-cos(x)}/{sin(x)}|$
cot$^2(x)$-cot$(x)-x$$1/{cos(x)}$ln$|{1+sin(x)}/{cos(x)}|$
$1/{1+sin(x)}$${-cos(x)}/{1+sin(x)}$$1/{1-sin(x)}$${cos(x)}/{1-sin(x)}$
$1/{1+cos(x)}$${sin(x)}/{1+cos(x)}$$1/{1-cos(x)}$${-sin(x)}/{1-cos(x)}$
$x$sin$(ax)$$-{1/a}x$cos$(ax)+1/{a^2}$sin$(ax)$$x$cos$(ax)$${1/a}x$sin$(ax)+1/{a^2}$cos$(ax)$
$e^{ax}$sin$(bx)$${e^{ax}}/{a^2+b^2}(a$sin$(bx)-b$cos$(bx))$$e^{ax}$cos$(bx)$${e^{ax}}/{a^2+b^2}(a$cos$(bx)+b$sin$(bx))$
sinh$(x)$cosh$(x)$arsinh$(x)$$x$arsinh$(x) - √{x^2+1}$
cosh$(x)$sinh$(x)$arcosh$(x)$$x$arcosh$(x) - √{x^2-1}$
tanh$(x)$ln(cosh$(x)$)artanh$(x)$$x$artanh$(x) +1/2$ln$(1-x^2)$
coth$(x)$ln|sinh$(x)$|arcoth$(x)$$x$arcoth$(x) +1/2$ln$(x^2-1)$
$√{x^2+a}$$1/2x√{x^2+a} + a/2$ln$|x+√{x^2+a}|$$1/{√{x^2+a}}$ln$|x+√{x^2+a}|$
$√{r^2-x^2}$$1/2x√{x^2-x^2} + {r^2}/2$arcsin$(x/r)$$1/{√{r^2-x^2}}$arcsin$(x/r)$

Content © Renewable-Media.com. All rights reserved. Created : February 5, 2015

Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week

Environment

Environmental Science is the most important of all sciences. As the world enters a phase of climate change, unprecedented biodiversity loss, pollution and human population growth, the management of our environment is vital for our futures. Learn about Environmental Science on ScienceLibrary.info.

Environmental Science

Great Scientists

Leonardo

1454 - 1519

Leonardo da Vinci's name is synonymous with genius and polymath. The range of his interests and talents seems endless. Despite his many lines of scientific investigation, his work in anatomy and botany was largely lost till rediscovered centuries later.

Leonardo da Vinci, 1452 - 1519, Italian artist and scientist/inventor.
Lugano English

Quote of the day...

The English are an unreligious lot. So they invented cricket to give them a sense of eternity.

ZumGuy Internet Promotions

Transalpine traduzioni