Science Library - free educational site

Thermodynamics

Specific Heat Capacity c

The specific heat capacity is the amount of thermal energy (Q) needed to raise a mass (kg) by a temperature ΔT by the formula:

$$Q = mcΔT$$

Specific heat is a measure of how much thermal energy is needed to raise a mass's temperature. Each material has its own characteristics, so has a unique specific heat capacity.

The symbol for specific heat is 'c', and has the unit J kg-1 K-1

Thermal Energy Q

The amount of thermal energy required to raise the temperature of a mass m and specific heat capcity c, by a temperature ΔT is:

Q = mcΔT

this formula does assume that c will not change with temperature.

If the thermal energy causes the substance to change state, c may change as a result. e.g. The specific heats of:

  • water is 4.186 J/g-K
  • ice 2.108 J/g-K
  • water vapour 1.996 J/g-K

Latent Heat

Latent heat is often used in the calculation of the thermal energy required to cause a change of state: latent heat of fusion (melting) and latent heat of vaporization (boiling).

The symbol of latent heat is L.

L = Q/m

The latent heat of fusion of copper is: Lf = 200 kJ kg-1

Example Questions

Question: how much energy would it take to melt 100g of ice which is currently at -10 °C?

Solution: ΔT = 10 K. This will bring the ice block to zero degrees celcius.

Q = mcΔT = (100g) . (4.186 J/g-K) . 10 K = 4186 J


Question: how much power is required to melt one tonne of copper?

Solution: The latent heat of fusion of copper is Lf = 200 kJ kg-1

Q = Lf.m = 200 kJ kg-1 . 1000 kg = 2.0 x 105 kJ = 200 MJ.

The power required is 200 MW-s, or 55 kWh.

Content © Renewable-Media.com. All rights reserved. Created : December 18, 2013 Last updated :February 14, 2016

Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week

Universe

'Universe' on ScienceLibrary.info covers astronomy, cosmology, and space exploration. Learn Science with ScienceLibrary.info.

Science

Great Scientists

Ernest Rutherford

1871 - 1937

Ernest Rutherford, 1871 - 1937, was a New Zealand chemist and physicist, who worked in Canada and England. His work pioneered our understanding of the atom.

Ernst Rutherford, 1871 - 1937
ScienceLibrary.info

Quote of the day...

We learn from history that we do not learn from history.

ZumGuy Internet Promotions

English language school