Science Library - free educational site

Sequences and Series

A sequence is a collection of numbers in a defined order. The terms of a sequence follow a certain rule.

E.g. 2, 5, 8, 11, .... rule: start at 2 and add 3 to each consecutive number. This is an arithmetic sequence.

0, 3, 6, 12, 24, .... rule: start at 3 and double each term to produce the next term. This is a geometric sequence.

The sum of all the terms in a sequence is a series. A series can have a finite or infinite number of terms.

$1 + 1/2 + 1/3 + 1/4 + 1/5$ .... is the harmonic series.

The sum of a series is symbolised by the capital Greek letter sigma (Σ). Limits may be set for a finite sum:

$$∑↙{i=1}↖n 1/i$$

This is shorthand for: $1/1 + 1/2 + 1/3 + ... + 1/n$

Leonard Euler was the first to use this notation for series.

Arithmetic sequences and series

A sequence or series which has a constant common difference, d, between two consecutive terms is arithmetic, with the general term:

$$u_n = u_{1} + (n - 1)d$$

where $u_1$ is the first term and d is the common difference.

The sum of a finite arithmetic series is:

$$S_n = n/2[2u_1 + (n - 1)d] = n/2(u_1 + u_n)$$

where n is the number of terms in the series, $u_1$ amd $u_d$ are the first and last terms, and each term is separated by a common difference, d.

Geometric sequences and series

If the ratio of two consecutive terms in a sequence or series is constant, then it is geometric.

For the sequence 1, 3, 9, 27, ... ; $u_1 = 1$ is the first term, and r = 3 is the common ratio. The recursive equation is: $u_n = u_{n-1}⋅r$.

The general term is: $u_n = u_1⋅r^{n-1}$, r ≠ -1, 0, 1.

The sum of a geometric series is:

$$S_n = {u_1(1 - r^n)}/{1 - r}, r ≠ 1$$

where n is the number of terms in the series, $u_1$ the first term, and r is the common ratio of any two consecutive terms.

Content © Andrew Bone. All rights reserved. Created : October 12, 2014

Latest Item on Science Library:

The most recent article is:

Air Resistance and Terminal Velocity

View this item in the topic:


and many more articles in the subject:

Subject of the Week


Mathematics is the most important tool of science. The quest to understand the world and the universe using mathematics is as old as civilisation, and has led to the science and technology of today. Learn about the techniques and history of mathematics on


Great Scientists

Isaac Newton

1642 - 1727

Issac Newton is possibly the most influential scientist of all time. In the second half of the 17th century, he produced a breathtaking number of physics and mathematical laws and methods, explaining forces and physical phenomena, and deriving mathematical explanations still in use today.

Isaac Newton, 1642 - 1727

Quote of the day...

Nam et ipsa scientia potestas est (knowledge itself is power)

ZumGuy Internet Promotions

Renewable energy media services