A quadratic equation is a special type of polynomial, which has a variable to the order of magnitude 2. e.g. $x^2 + 2x - 1$ has x to the order of magnitudes 2 and 1.

Zero factor property: if $aĆb=0$, then it follows that either $a=0$ and/or $b=0$.

The root or zero of a function is the value for x which causes the function to equal zero.

If a quadratic can be reduced to two factors equal to zero, then the zeros of the function can be identified.

e.g. $(x+2)(x-3)=0$ has two solutions: $x=-2$ and $x=3$. For these values of $x$, $f(x)=0$

The solution to the quadratic equation (binomial solution) $ax^2 + bx + c = 0$ is:

$$x = {-b ± √{b^2 - 4ac}}/{2a}$$For a quadratic in the form $y = ax^2 + bx + c$, the axis of symmetry is $x = {-b}/{2a}$, and the vertex is located at: $({-b}/{2a}, f{-b}/{2a})$.

$({-b}/{2a}, f{-b}/{2a})$For the quadratic equation $ax^2 + bx + c = 0$:

(i) If b = 0, $ax^2 + c = 0$, so $x = ±√{{-c}/a}$

(ii) If c = 0, $ax^2 + bx = 0$, so $x(ax + b) = 0$, so $x = 0$, or $x = {-b}/a$

(iii) If b and c = 0, $x^2 = 0$, so $x = 0$

A square of factors expands out to: $(x ± p)^2 = (x ± p)(x ± p) = x^2 ± 2px + p^2$

A general quadratic, $ax^2 + bx + c = 0$ can be rewritten as: $x^2 + b/ax + c/a = 0$

$x^2 + b/ax = -c/a$

$x^2 + 2x⋅b/{2a} = -c/a$

$x^2 + 2x⋅b/{2a} + {(b/{2a})}^2 = {(b/{2a})}^2 - c/a$

The part on the left is of the form $ x^2 ± 2px + p^2 = (x ± p)^2$, where $p = {(b/{2a})}$

∴ $(x + b/{2a})^2 = {(b/{2a})}^2 - c/a$

$x + b/{2a} = ±√{{b^2 - 4ac}/{4a^2}}$

$x = -b/{2a} ±√{{b^2 - 4ac}/{4a^2}}$

$x = {-b ± √{b^2 - 4ac}}/{2a}$

The factors may be found by using the quadratic formula, which supplies answers $p$ and $q$ for equations with two roots. The factors are: $(x+q)(x+q)$.

$x_1 + x_2 = -b/a$ and $x_1⋅x_2 = c/a$

where $x_1$ and $x_2$ are the two solutions to $ax^2+b+c=0$, where $a$, $b$, $c$ ā ā. $a ≠ 0$.

For a quadratic equation, $ax^2 + bx +c$, the discriminant is: $Δ = b^2 - 4ac$.

The number of roots (solutions) a quadratic has depends on the sign of the discriminant.

The discriminant is the part of the quadratic solution which appears under the root sign. If the discriminant is negative, the root has no solution in ā.

The discriminant determines how many solutions for $x$ there are when the function equals zero (i.e. how many x-axis intercepts there are).

$Δ > 0$ : 2 solutions for x when the function equals zero. The parabola crosses the x-axis two times.

$Δ = 0$ : 1 solution for x. The parabola touches the x-axis without crossing it.

$Δ > 0$ : 0 solutions for x. The parabola does not touch or cross the x-axis.

Content © Renewable.Media. All rights reserved. Created : January 28, 2014 Last updated :January 22, 2016

The most recent article is:

View this item in the topic:

and many more articles in the subject:

Environmental Science is the most important of all sciences. As the world enters a phase of climate change, unprecedented biodiversity loss, pollution and human population growth, the management of our environment is vital for our futures. Learn about Environmental Science on ScienceLibrary.info.

1826 - 1866

Bernhard Riemann was a German mathematician whose revolutionary ideas of multi-dimensional space challenged Euclidean geometry perspectives, and ultimately led mathematics to radically new approaches, and found applications in many fields, such as General Relativity.

Website © renewable-media.com | Designed by: Andrew Bone