Science Library - free educational site

Quadratic functions

A stream of water follows the path of a trajectory, and can be described by a quadratic equation: a parabola

A quadratic equation is a special type of polynomial, which has a variable to the order of magnitude 2. e.g. $x^2 + 2x - 1$ has x to the order of magnitudes 2 and 1.

Zero factor property: if $aƗb=0$, then it follows that either $a=0$ and/or $b=0$.

The root or zero of a function is the value for x which causes the function to equal zero.

If a quadratic can be reduced to two factors equal to zero, then the zeros of the function can be identified.

e.g. $(x+2)(x-3)=0$ has two solutions: $x=-2$ and $x=3$. For these values of $x$, $f(x)=0$

Quadratic solution

The solution to the quadratic equation (binomial solution) $ax^2 + bx + c = 0$ is:

$$x = {-b ± √{b^2 - 4ac}}/{2a}$$

For a quadratic in the form $y = ax^2 + bx + c$, the axis of symmetry is $x = {-b}/{2a}$, and the vertex is located at: $({-b}/{2a}, f{-b}/{2a})$.

$({-b}/{2a}, f{-b}/{2a})$

Special cases

For the quadratic equation $ax^2 + bx + c = 0$:

(i) If b = 0, $ax^2 + c = 0$, so $x = ±√{{-c}/a}$

(ii) If c = 0, $ax^2 + bx = 0$, so $x(ax + b) = 0$, so $x = 0$, or  $x = {-b}/a$

(iii) If b and c = 0, $x^2 = 0$, so $x = 0$

Completing the Square

A square of factors expands out to: $(x ± p)^2 = (x ± p)(x ± p) = x^2 ± 2px + p^2$

A general quadratic, $ax^2 + bx + c = 0$ can be rewritten as: $x^2 + b/ax + c/a = 0$

$x^2 + b/ax = -c/a$

$x^2 + 2x⋅b/{2a} = -c/a$

$x^2 + 2x⋅b/{2a} + {(b/{2a})}^2 = {(b/{2a})}^2 - c/a$

The part on the left is of the form $ x^2 ± 2px + p^2 = (x ± p)^2$, where $p = {(b/{2a})}$

∴ $(x + b/{2a})^2 = {(b/{2a})}^2 - c/a$

$x + b/{2a} = ±√{{b^2 - 4ac}/{4a^2}}$

$x = -b/{2a} ±√{{b^2 - 4ac}/{4a^2}}$

$x = {-b ± √{b^2 - 4ac}}/{2a}$


The factors may be found by using the quadratic formula, which supplies answers $p$ and $q$ for equations with two roots. The factors are: $(x+q)(x+q)$.

Viète's Theorem

$x_1 + x_2 = -b/a$ and $x_1⋅x_2 = c/a$

where $x_1$ and $x_2$ are the two solutions to $ax^2+b+c=0$, where $a$, $b$, $c$ āˆˆ ā„. $a ≠ 0$.


For a quadratic equation, $ax^2 + bx +c$, the discriminant is: $Δ = b^2 - 4ac$.

The number of roots (solutions) a quadratic has depends on the sign of the discriminant.

The discriminant is the part of the quadratic solution which appears under the root sign. If the discriminant is negative, the root has no solution in ā„.

Mathematics question

The discriminant determines how many solutions for $x$ there are when the function equals zero (i.e. how many x-axis intercepts there are).

$Δ > 0$ : 2 solutions for x when the function equals zero. The parabola crosses the x-axis two times.

$Δ = 0$ : 1 solution for x. The parabola touches the x-axis without crossing it.

$Δ > 0$ : 0 solutions for x. The parabola does not touch or cross the x-axis.

Content © All rights reserved. Created : January 28, 2014 Last updated :January 22, 2016

Latest Item on Science Library:

The most recent article is:


View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week


Physics is the science of the very small and the very large. Learn about Isaac Newton, who gave us the laws of motion and optics, and Albert Einstein, who explained the relativity of all things, as well as catch up on all the latest news about Physics, on

Gravity lens

Great Scientists

Leo Baekeland

1863 - 1944

Leo Baekeland, 1863 - 1944, was a Belgian-born American chemist, best known for his invention of bakelite, the first commercially produced synthetic polymer.

Read about history on
IT Forum by Sean Bone

Quote of the day...

It is impossible to step twice into the same river.

ZumGuy Internet Promotions