 # Natural logs and Euler's Number

## The Natural Exponential Function

### Euler's Number

\$\$e=∑↙{n=0}↖{∞}1/{n!}\$\$

\$\$e^{iπ}+1=0\$\$

### Euler's Equation

\$e^{ix}= \$cos\$x + i\$sin\$x\$

The irrational number \$e\$ is a fundamental natural number of great importance in mathematics. It was searched for by members of the Swiss Bernoulli family in the 17th century, but was finally defined accurately by Leonard Euler. For this reason, it is called Euler's number. e is irrational, and is defined by a series. In decimals, its value to 10 significant figures is e = 2.718281828..

log\$_{10}x\$ expresses the value of the exponent of 10 which will equal x. e.g. log\$_{10}100 = 2\$, log\$_{10}1000 = 3\$

The 'natural log' is log\$_{e}x\$. It is equal to the exponent of e which will equal x. A short-hand way to write log\$_{e}x\$ is lnx.

e.g. ln\$e =1\$, ln\$1=0\$, ln\$7.39=2\$, since \$e^2=7.39\$.

There is no exponent of e which will result in a negative number, so the domain of ln\$x\$ is \$x>0\$. the range is ℝ.

The infinite series

\$\$f(x)= ∑↙{n=0}↖{∞} {x^n}/{n!}= 1+x+{x^2}/2+ {x^3}/{2⋅3} + {x^4}/{2⋅3⋅4}+ ...... = e^x\$\$

### Inverse function of the natural log

The inverse of \$f(x)=e^x\$ is \$f^{-1}(x)=\$log\$_{e}x\$

e.g. If \$f(x) = e^{x-2}\$:

For \$f^{-1}(x)\$, \$x=e^{y-2}\$

\$y-3= \$ln\$x\$, or \$y=3+ \$ln\$x\$

## Compound Interest

Interest from invested capital is calculated from the formula:

\$\$A=C(1+r/n)^{nt}\$\$

where \$A\$ is the final amount (capital + interest), \$C\$ is the capital, and \$r\$ is the interest rate. \$n\$ is the number of times the interest is compounded (calculated and added to the capital) in a year, and \$t\$ is the number of years the money is invested for.

The more often the interest is compounded, the faster the capital grows. What is the limit as n approaches the largest number of compoundings possible? In other words, what would be the yield if the interest is compounded continuously and not at intervals?

Solution: For r = 1.0, \${lim}↙{n→∞} C(1+r/n)^{nt} = Ce\$

e = 2.718281828...

This is Euler's number, and is an irrational number.

\$a^x = e^{xlna}\$

## Exponential Growth

The probability that of a group of people selecting their hats after a meeting at random, no one selects their own hat, is \$1/e\$!

The reason that \$e\$ is so important is that nature obliges its growths and decays to use \$e\$, rather than the human inventions deriving from base-10 finger-counting systems.

Examples of nature's enthusiasm for Herr Euler's number are: micro-organism population growth rates, virus epidemics, nuclear chain reactions, heat transfer. Even human systems comply to \$e\$: compound interest, computer processing power, human population growth, and internet traffic development, can all be modelled on the natural logarithm and \$e\$.

### Population Growth

What do a city and a petri dish of bacteria have in common?

Populations of every type follow an exponential growth function. The parameters, like fertility rate, number of children per family, etc., may vary from city to city around the world, but the curve has the same basic shape: an exponential curve.

### Example: city life The population of a city, in millions, is a function of time, t, in years:

\$\$P(t) = e^{(0.025)t}\$\$

Taking 2000 as year 0, \$P(0) = 1,000,000\$

At the end of one year, the population was: \$P(1) = e^{(0.025)1} = 1.025315\$ million, indicating an increase of 25,315 people.

In 2015, the population should be: \$P(t) = e^{(0.025)×15} = 1.454991\$, indicating a cumulative growth of 454,991 people in the 15 years since 2000.

When will the population reach 2 million?

Now, we need to solve for \$t\$:

\$2 = e^{(0.025)t}\$

\$ln2 = lne^{(0.025)t}\$

\$ln2 = 0.025t\$

\$t = {ln2}/{0.025} = 28\$ years, or 2028

## Site Index

### Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

### Environment

Environmental Science is the most important of all sciences. As the world enters a phase of climate change, unprecedented biodiversity loss, pollution and human population growth, the management of our environment is vital for our futures. Learn about Environmental Science on ScienceLibrary.info. ### Great Scientists

#### Subrahmanyan Chandrasekhar

1910 - 1995

Subrahmanyan Chandrasekhar, 1910 - 1995, was an Indian astrophysicist, born in Punjab, and worked in the USA. He made significant contributions to many fields, including General Relativity and Black Holes.  ### Quote of the day... "Or I shall have you hung, drawn and decimalled," threatened Napoleon.
"Decimalled?" enquired Sean with a rare mélange of curious anxiety.
"Yes. The French Republic has gone metric," explained Napoleon proudly. 