Science Library - free educational site

Limits of Functions

Given the polynomials:

$$p(x) = a_kx^k + a_{k-1}x^{k-1} + ... + a_1x + a_0$$ $$q(x) = b_mx^m + b_{m-1}x^{m-1} + ... + b_1x + b_0$$

then:

$${lim}↙{x→x_0} p(x) = p(x_0) $$ $${lim}↙{x→x_0} {p(x)}/{q(x)} = {p(x_0)}/{q(x_0)}$$

if $q(x_0) ≠ 0$$ $${lim}↙{x→±∞} {p(x)}/{q(x)} = [\table ± ∞, k > m; {a_k}/{b_m}, k = m; 0, k = m, k < m;$$

e.g. ${lim}↙{x→± ∞} {3x^2}/{x^2 + 5}$

In this case, k = 2 and m = 2, so ${lim}↙{x→± ∞} {3x^2}/{x^2 + 5} = {a_k}/{b_m} = {3}/{1} = 3$

e.g. ${lim}↙{x→5} {-x^2 + 5x}/{x^2 - 2x - 15} = {-x(x - 5)}/{(x - 5)(x + 3)} = {-x}/{(x + 3)} = -5/8$

${lim}↙{x→∞} {x^3 - 1}/{x^2 + x}$ and, ${lim}↙{x→-∞} {x^3 - 1}/{x^2 + x}$
In this case, k = 3 and m = 2, so ${lim}↙{x→∞} {x^3 - 1}/{x^2 + x} = ∞$ ${lim}↙{x→-∞} {x^3 - 1}/{x^2 + x} = -∞$

some important limits

${lim}↙{x→0} {sinx}/x = 1$

Function sinx/x

${lim}↙{x→± ∞} (1 + 1/x)^x = e$

${lim}↙{x→0} {log_a(1 + x)}/x = log_ae$, provided $0 < a ≠ 1$

${lim}↙{x→0} {ln(1 + x)}/x = 1$

Function

${lim}↙{x→0} {a^x - 1}/x = ln (a)$, provided $0 < a ≠ 1$

${lim}↙{x→0} {e^x - 1}/x = 1$

Asymptotes

Asymptotes

If ${lim}↙{x→∞} (f(x)-g(x)) = 0$, g approximates f asymptotically when $x→∞$

$m = {lim}↙{x→∞} {f(x)}/x$

$q = {lim}↙{x→∞} (f(x) - m⋅x)$

Example

Asymptotes

f: x|→ ${x^3 - 2x^2 - x + 3}/{x^2 - 1}$, $D_f$ = R\{±1}

Vertical asymptotes: x = ± 1

Oblique asymptote:

$m = {lim}↙{x→±∞} {f(x)}/x = {x^3 - 2x^2 - x + 3}/{x^3 - x} = 1$

$q = {lim}↙{x→±∞} (f(x) - m⋅x)$

$= {lim}↙{x→±∞} {{x^3 - 2x^2 - x + 3 - x^3 + x}/{x^2 - 1} = -2$

Therefore, y = x - 2 is the oblique asymptote.

Example

Parabolic asymptote

g: x|→ ${x^5 - x + 1}/{x^3 + x}$, $D_g = R^+$

Vertical asymptote: x = 0

Carrying through the division:

$g(x) = x^2 - 1 + 1/{x^3 + x}$

For which ${lim}↙{x→±∞} (g(x) - x^2 + 1)$

$ = {lim}↙{x→±∞} 1/{x^3 + x} = 0$

The function is therefore approximately asymptotic to the parabola $y = x^2 - 1$

Content © Andrew Bone. All rights reserved. Created : November 20, 2014

Latest Item on Science Library:

The most recent article is:

Air Resistance and Terminal Velocity

View this item in the topic:

Mechanics

and many more articles in the subject:

Subject of the Week

Computing

Information Technology, Computer Science, website design, database management, robotics, new technology, internet and much more. JavaScript, PHP, HTML, CSS, Python, ... Have fun while learning to make your own websites with ScienceLibrary.info.

Computer Science

Great Scientists

Pierre-Simon Laplace

1749 - 1827

Pierre-Simon de Laplace was a French aristocrat who narrowly escaped the guillotine during the French Revolution. He was the mathematics tutor then friend of Napoleon Bonaparte at the École Militaire in Paris, and briefly became his Minister of the Interior in 1800.

Pierre-Simon de Laplace
IT Forum by Sean Bone

Quote of the day...

Capitalism is the astounding belief that the wickedest of men will do the wickedest of things for the general good of everyone.

ZumGuy Internet Promotions

Yoga in Mendrisio