Science Library - free educational site

Limits of Functions

Given the polynomials:

$$p(x) = a_kx^k + a_{k-1}x^{k-1} + ... + a_1x + a_0$$ $$q(x) = b_mx^m + b_{m-1}x^{m-1} + ... + b_1x + b_0$$

then:

$${lim}↙{x→x_0} p(x) = p(x_0) $$ $${lim}↙{x→x_0} {p(x)}/{q(x)} = {p(x_0)}/{q(x_0)}$$

if $q(x_0) ≠ 0$$ $${lim}↙{x→±∞} {p(x)}/{q(x)} = [\table ± ∞, k > m; {a_k}/{b_m}, k = m; 0, k = m, k < m;$$

e.g. ${lim}↙{x→± ∞} {3x^2}/{x^2 + 5}$

In this case, k = 2 and m = 2, so ${lim}↙{x→± ∞} {3x^2}/{x^2 + 5} = {a_k}/{b_m} = {3}/{1} = 3$

e.g. ${lim}↙{x→5} {-x^2 + 5x}/{x^2 - 2x - 15} = {-x(x - 5)}/{(x - 5)(x + 3)} = {-x}/{(x + 3)} = -5/8$

${lim}↙{x→∞} {x^3 - 1}/{x^2 + x}$ and, ${lim}↙{x→-∞} {x^3 - 1}/{x^2 + x}$
In this case, k = 3 and m = 2, so ${lim}↙{x→∞} {x^3 - 1}/{x^2 + x} = ∞$ ${lim}↙{x→-∞} {x^3 - 1}/{x^2 + x} = -∞$

some important limits

${lim}↙{x→0} {sinx}/x = 1$

Function sinx/x

${lim}↙{x→± ∞} (1 + 1/x)^x = e$

${lim}↙{x→0} {log_a(1 + x)}/x = log_ae$, provided $0 < a ≠ 1$

${lim}↙{x→0} {ln(1 + x)}/x = 1$

Function

${lim}↙{x→0} {a^x - 1}/x = ln (a)$, provided $0 < a ≠ 1$

${lim}↙{x→0} {e^x - 1}/x = 1$

Asymptotes

Asymptotes

If ${lim}↙{x→∞} (f(x)-g(x)) = 0$, g approximates f asymptotically when $x→∞$

$m = {lim}↙{x→∞} {f(x)}/x$

$q = {lim}↙{x→∞} (f(x) - m⋅x)$

Example

Asymptotes

f: x|→ ${x^3 - 2x^2 - x + 3}/{x^2 - 1}$, $D_f$ = R\{±1}

Vertical asymptotes: x = ± 1

Oblique asymptote:

$m = {lim}↙{x→±∞} {f(x)}/x = {x^3 - 2x^2 - x + 3}/{x^3 - x} = 1$

$q = {lim}↙{x→±∞} (f(x) - m⋅x)$

$= {lim}↙{x→±∞} {{x^3 - 2x^2 - x + 3 - x^3 + x}/{x^2 - 1} = -2$

Therefore, y = x - 2 is the oblique asymptote.

Example

Parabolic asymptote

g: x|→ ${x^5 - x + 1}/{x^3 + x}$, $D_g = R^+$

Vertical asymptote: x = 0

Carrying through the division:

$g(x) = x^2 - 1 + 1/{x^3 + x}$

For which ${lim}↙{x→±∞} (g(x) - x^2 + 1)$

$ = {lim}↙{x→±∞} 1/{x^3 + x} = 0$

The function is therefore approximately asymptotic to the parabola $y = x^2 - 1$

Content © Renewable-Media.com. All rights reserved. Created : November 20, 2014

Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week

Computing

Information Technology, Computer Science, website design, database management, robotics, new technology, internet and much more. JavaScript, PHP, HTML, CSS, Python, ... Have fun while learning to make your own websites with ScienceLibrary.info.

Computer Science

Great Scientists

Galileo Galilei

1564 - 1642

Galileo Galilei, was an Italian scientist whose name is synonymous with the start of the modern scientific method at the beginning of the scientific revolution of the 16-17th centuries.

Galileo Galilei
Vitruvian Boy

Quote of the day...

Free trade has not worked because we have not tried it.

ZumGuy Internet Promotions

Transalpine traduzioni