Science Library - free educational site

Limits and Infinites

Limits are a concept that goes back at least as far as Archimedes, a Greek scientist, engineer and mathematician in the 3rd century BCE. He calculated a value for π based on the limit of measurements external and internal to a circle.

Rules for limits

If ${lim}↙{n→+∞} a_n = a$, and ${lim}↙{n→+∞} b_n = b$

Then, (i) ${lim}↙{n→+∞} a_n ± b_n = a ± b$

(ii) ${lim}↙{n→+∞} a_n ⋅ b_n = a ⋅ b$

(iii) ${lim}↙{n→+∞} ({a_n}/{b_n}) = a/b$

If ${lim}↙{n→+∞} a_n = a$, ⇒ ${lim}↙{n→+∞} 1/{a_n} = 1/a$

If ${lim}↙{n→+∞} a_n = +∞$, ${lim}↙{n→+∞} b_n = +∞$ ⇒ ${lim}↙{n→+∞} (a_n + b_n) = +∞$

If ${lim}↙{n→+∞} a_n = +∞$, ${lim}↙{n→+∞} b_n = +∞$ ⇒ ${lim}↙{n→+∞} (a_n - b_n) = ∞ - ∞$: i.e. indeterminate solution

${lim}↙{n→+∞} 1/{n^a} = 0$ (a > 0)

${lim}↙{n→+∞} a^n = 0$ (|a| < 1)

${lim}↙{n→+∞} ^n√{a} = 1$ (a > 0)

${lim}↙{n→+∞} ^n√{n} = 1$

${lim}↙{n→+∞} {(log n)^b}/{n^a} = 0$ (a > 0, b ∈ ℝ)

${lim}↙{n→+∞} {n^b}/{a^n} = 0$ (b > 0, |a| > 1)

${lim}↙{n→+∞} {a^n}/{n!} = 0$ (a ∈ ℝ)

${lim}↙{n→+∞} {n!}/{n^n} = 0$

${lim}↙{n→+∞} (1 + 1/n)^n = e$

${lim}↙{n→+∞} (1 + a/n)^{b⋅n} = e^{a⋅b}$, (a, b ∈ ℝ)

${lim}↙{x→±∞} (f(x) ± g(x)) = {lim}↙{x→±∞} f(x) ± {lim}↙{x→±∞} g(x) = L_1 ± L_2$

${lim}↙{x→±∞} (f(x) ⋅ g(x)) = {lim}↙{x→±∞} f(x) ⋅ {lim}↙{x→±∞} g(x) = L_1 ⋅ L_2$

${lim}↙{x→±∞} (f(x) ÷ g(x)) = {lim}↙{x→±∞} f(x) ÷ {lim}↙{x→±∞} g(x) = L_1 ÷ L_2$, where $L_2 ≠ 2$

${lim}↙{x→±∞} kf(x) = k {lim}↙{x→±∞} f(x) = kL_1$

${lim}↙{x→±∞} [f(x)]^{a/b} = L_1^{a/b}, a/b ∈ ℚ$, provided $L_1^{a/b} $ is real

Convergence of a Series

The sum of a finite geometric series is: $S_n = {u_1(1-r^n)}/{1-r}$, where $r$ is the common ratio of two consecutive terms, and $n$ is the number of terms $u$.

For a geometric series, ${Σ}↙{n=0}↖{∞} = {lim}↙{n→∞} {u_1(1-r^n)}/{1-r}$.

When $-1 < r < 1$, ${lim}↙{n→∞} r^n = 0$, and the series converges to its sum, $S={u_1}/{1-r}$.

Content © Renewable-Media.com. All rights reserved. Created : October 12, 2014

Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week

Universe

'Universe' on ScienceLibrary.info covers astronomy, cosmology, and space exploration. Learn Science with ScienceLibrary.info.

Science

Great Scientists

Robert Boyle

1627 - 1691

Robert Boyle was an early champion of the scientific method, using rigorous scientific experiment to derive natural laws, and brushing aside religious criticism based on dogma with mathematics and logic.

Boyle
Vitruvian Boy

Quote of the day...

"The home entertainment industry..." Luca Pacioli was saying.
Sean looked at Leonardo for an explanation.
"He means printed books," whispered Leonardo.
"... may be just a passing fad, but it is killing traditional culture."

ZumGuy Internet Promotions

Vitruvian Boy