Science Library - free educational site


Surface areas of 3D shapes

The angle in a semi-circle is a right-angle

Cube and Prism

Cube: $A = L^3$


$A = 4πr^2$


$A = B + {PL}/2$, where B is the area of the base, P is the perimeter of the base, and L is the height of the slant $L= √{{h^2+r^2}}$ where h is the pyramid height and r is the inradius of the base.

Same arc angles
Angles subtended on a circle by an arc are half the size of angles subtended at the centre by the same arc


$A = πr(r + l)$, where r is the radius of the base, and l is the lateral length, given by $l = √{r^2 + h^2}$, where h is the height of the cone.


$A = πd(r + h)$, where d is the diameter of the base, r the radius of the base and h the height of the cylinder.



The length of an arc = $({θ}/{2π})(2πr) = rθ$

This formula assumes the angle is given in radians.


The area of a sector = $({θ}/{2π})(πr^2)={θr^2}/2$

where r the radius of the circle, and the sector subtends the central angle θ.

Length of chord: $2r$sin$(θ/2)$, where the chord is subtended by central angle $θ$ of a circle with radius $r$.

Sagitta = perpendicular line from the centre of a chord to the circumference of a circle. The length of the sagitta is $r - r$cos$C/2$, where $r$ is the radius of the circle and C the angle at the centre subtended by the chord.


Area of a circle segment
Area of a circle segment

The area of a circle segment is:

$A_{seg} = 1/2(L_ar-L_c(r-h))=1/2r^2(θ-sin(θ))$

where $θ$ is the central angle in radians, $r$ is the radius, $L_a$ is the length of the arc, and $L_c$ is the length of the chord.


A radian is the size of the angle subtended by an arc the same length as the radius of the circle.

Since the circumference of a circle is 2πr, there are 2π radians in 360°.

One radian is equal to ${360°}/{2π} = 57.2957795°$. Since π is irrational, the radian cannot be expressed exactly in degrees.

Angle between a tangent and a chord
The angle between a tangent and a chord is equal to an angle subtended by the chord



$V = L^3$


$V = 4/3πr^3$

Cone and Pyramid

$V = 1/3BH$, where B is the area of the base, and H is the height, measured perpendicularly from the base to the apex.


$V = πr^2H$, where H is the height and r is the radius of the base circle.

Volume of a Cone

$V = 1/3 π r^2 h$

where V is the volume, r is the radius of the base circle, and h is the height of the cone.

Conic Sections

Conic Sections
Conic Sections: slicing a cone forms the shapes of four special functions
Hyperbola: $x^2 - y^2 = 1$




${x/a}^2+{y/b}^2=r^2$, where $a$ and $b$ are the major and minor axes.

${x/a}^2+{y/b}^2= $sin$^2θ + $cos$^2θ$, where $θ$ is the angle to a point on the ellipse from the centre, and x and y are the Cartesian coordinates of the point, where $x=0$ and $y=0$ is the centre.





Content © All rights reserved. Created : March 30, 2015

Latest Item on Science Library:

The most recent article is:


View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week


Mathematics is the most important tool of science. The quest to understand the world and the universe using mathematics is as old as civilisation, and has led to the science and technology of today. Learn about the techniques and history of mathematics on


Great Scientists

Karl Schwarzschild

1873 - 1916

Karl Schwarzschild was a German astronomer and physicist, and a pioneer of the field of astrophysics. He solved Einstein's field equations while serving as an artillery office on the Eastern Front, during World War One.

Karl Schwarzschild, 1873 - 1916

Quote of the day...

"To be a scholar," said Galileo, "you have got to publish papers - and the best papers have something written on them."

ZumGuy Internet Promotions

Renewable energy media services