Science Library - free educational site

Gas laws

States of Matter

There are three states of matter, whose structure and behaviour are explained by the kinetic theory: the atoms in any substance have energy proportional to the temperature. This energy causes motion, and the degree of movement the atoms or molecules have depends on the strength of the attractive forces, or bonds, between them.

Since all substances have different bonding strengths, the amount of energy needed to break these bonds is different. This is why, for example, it is necessary to heat iron to 1538 °C to melt it, while ice melts at 0 °C.

Solids

Particles in a solid
Particles in a solid are strongly bonded and vibrate in a fixed place

Solids are strongly bonded. This means the atoms attract each other so strongly they cannot move around, and vibrate within a rigid structure, with the atoms are fixed in the one place.

The kinetic theory says that atoms vibrate back and forth within a structure. How much energy is needed to break these bonds determines the melting point of the substance. Every substance has its own unique melting point, which depends on the elements which compose the solid.

Particles in a liquid
Particles in a liquid are loosely bonded and free to move

Liquids

Liquids are weakly bonded. This means they still attract each other, but less than in a solid. They have too much kinetic energy for the attractive forces to hold them in the one place, so are able to move around and past each other without being held together. Since the molecules are free to move around, they take the shape of a container they are in.

Gas

Particles in a gas
Particles in a gas are not bonded and have high kinetic energy

Gas has so much kinetic energy that the molecules are not bonded together at all. This high kinetic energy causes them to push against anything they hit, such as the walls of their container. This creates a pressure which is proportional to their thermal energy (temperature).

The gas pressure depends on the amount of gas (number of molecules), not what type of molecule they are.

The pressure will increase if the temperature increases. Conversely, if the volume the gas occupies increases, the pressure and the temperature will decrease. That is why it is colder on top of a mountain than at sea level, and the air is 'thinner' (lower pressure).

Water: 3 states at once

Iceberg
Iceberg on water with clouds behind: three states of matter for the one substance

The kinetic theory states that all atoms and molecules which compose a substance have some thermal energy, causing them to vibrate in situ or move.

Ice has a temperature below 0°C, and forms a rigid structure of the $H_2O$ molecules. As you can see, ice has a lower density than liquid water, so floats. It has come in from a colder location and is melting.

The water around it has a temperature above 0°C. In time the water and the ice will reach the same temperature. Either the water freezes and forms more ice, or the ice melts and joins the water.

The clouds are not gas. They are composed of tiny droplets of of water. However, there is invisible water gas in the air. All liquids exchange molecules with the air as they try to balance out the temperature difference.

Content © Renewable-Media.com. All rights reserved. Created : May 25, 2014 Last updated :June 23, 2015

Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week

Environment

Environmental Science is the most important of all sciences. As the world enters a phase of climate change, unprecedented biodiversity loss, pollution and human population growth, the management of our environment is vital for our futures. Learn about Environmental Science on ScienceLibrary.info.

Environmental Science

Great Scientists

Robert Hooke

1635 - 1703

Robert Hooke was an English polymath and all-round genius, active in an extraordinary range of fields during the English Enlightenment. History has not been fair to Hooke, obscuring his contributions in the shadow of his gigantuan rival, Isaac Newton.

Robert Hooke, 1635 - 1703. English scientist.
Lugano English

Quote of the day...

"Zer trick," said Einstein, "ist to realise zat space-time ist not vat we dink it ist: it ist not fixed und immovable, but flopping about like ... ein big floppy ding."
"A rubber mattress?" suggested Sean.
"If zat ist your idea of a good time, ja."

ZumGuy Internet Promotions

Renewable energy media services