Science Library - free educational site

Derivatives of trigs, exponents and logs

Logs and Exponents

Natural log
Natural log and its first differential 1/x

$e^{lnx} = x$

ln$e^x = x$

If $f(x) = e^x$, $f'(x) = e^x$

If $f(x) = e^{g(x)}$, $f'(x) = g'(x)e^{g(x)}$

If $f(x) = $ln$x$, $f'(x) = 1/x$

If $f(x) = a^x$, $f'(x) = ($ln$a)a^x$

For $f(x) = a^x$, $f'(x)$ at $x=0$ is ln$a$.

If $f(x) = $log$_{a}x$, $f'(x) = 1/{xlna}$

If $f(x) = $ln$g(x)$, $f'(x) = {g'(x)}/{g(x)}$

Example: find the derivative of $f(x) = e^{3x^2}$:

$f'(x) = g'(x)e^{g(x)} = 6xe^{3x^2}$

Example: find the derivative of $f(x) = $ln$(3x^2)$: $f'(x) = {g'(x)}/{g(x)} = {6x}/{3x^2} = 2/x$

e exponent x is its own derivative

The letter $e$ was selected to represent the irrational number 2.718281828459, in honour of the great Swiss mathematician Leonhard Euler (1706 - 1781).

$e$ is defined as the limit of $(1 + 1/n)^n$ as n approaches ∞.

It may also be expressed as:

$$e = ∑↙{n=0}↖{∞} 1/{n!} = 1 + 1/1 + 1/{1⋅2} + 1/{1⋅2⋅3} + ...$$

Derivatives of Trigonometric Functions

Sine and cosine

Observing the graph of sine of $x$, it can be seen that the slope is graphed by cosine $x$. When $x$ is zero, sine is zero, with increasing tangent gradient. At zero, the slope is maximum, and gradually decreases, but not constantly, to where it levels out at $π/2$, where the tangent gradient is zero.

cosine is therefore the first derivative of the sine function.

Since the sine and cosine graphs superimpose if sine is translated $π/2$ to the left, cos$x = $sin$(x+π/2)$.

$d/{dx}($cos$x) = d/{dx}[$sin$(x+ π/2)] $

$= [$cos$(x+π/2)]⋅1 = $cos$(x+π/2)$

cos$(x+π/2) = -$sin$x$.


The derivative of $f(x) = sinx$ from first principles:
$f'(x) = {lim}↙{h→0} {f(x+h) - f(x)}/h$
     $= {lim}↙{h→0} {sin(x+h) - sin(x)}/h$
     $= {lim}↙{h→0} ({sin x⋅cos h + cos x ⋅ sin h - sin x}/h)$
     $= {lim}↙{h→0} ({cos x⋅ {sinh}/h + sinx⋅ {cosh -1}/h)$
     $= cosx⋅{lim}↙{h→0} {sinh}/h + sinx⋅{lim}↙{h→0} {cosh - 1}/h$
     $= cosx⋅1 + sinx⋅0 = cosx$

The derivative of tan$x$ can also be derived by a similar procedure:

$d/{dx}($tan$x) = d/{dx}({sinx}/{cosx}) = {cosx(cosx) - sinx(-sinx)}/{(cosx)^2} = {cos^2x+sin^2x}/{cos^2x} = 1/{cos^2x}$, cos$x ≠0$

Basic Trig Differentials

If $f(x) = $sin$ x$, then $f'(x) = $cos$ x$

If $f(x) = $cos$ x$, then $f'(x) = -$sin$ x$

If $f(x) = $tan$ x$, then

$f'(x) = $se$c^2 x$ $ ( = 1/{cos^2x}) = 1 + $tan$^2x$

Basic Trig Differentials

If $f(x) = $arcsin$ x$, then $f'(x) = 1/{√{1-x^2}}$

If $f(x) = $arccos$ x$, then $f'(x) = -1/{√{1-x^2}}$

If $f(x) = $arctan$ x$, then $f'(x) = 1/{1+x^2}$

If $f(x) = $arccot$ x$, then $f'(x) = -1/{1+x^2}$

further Trig Differentials

If $f(x) = $sin$ {x/2}$, then $f'(x) = {1/2}$cos$ {x/2}$

If $f(x) = $cos$ 3x$, then $f'(x) = -3$sin$ 3x$

If $f(x) = $sin$(2x - 1)$, then $f'(x) = 2$cos$(2x - 1)$

If $f(x) = $cot$x$, then

$f'(x) = -$csc$^2x = -1/{sin^2(x)} = -1 - $cot$^2(x) $

Content © Renewable-Media.com. All rights reserved. Created : January 23, 2015

Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week

Computing

Information Technology, Computer Science, website design, database management, robotics, new technology, internet and much more. JavaScript, PHP, HTML, CSS, Python, ... Have fun while learning to make your own websites with ScienceLibrary.info.

Computer Science

Great Scientists

Edwin Chadwick

1800 - 1890

Sir Edwin Chadwick was an English social reformer who was instrumental in bringing about reform in Britain, particularly with regards sanitation and public health.

Sir Edwin Chadwick
ScienceLibrary.info

Quote of the day...

ZumGuy Internet Promotions

IT information forum by Sean Bone