Science Library - free educational site

Definite integrals

Fundamental Theorem of Calculus

If $f$ is a continuous function on the interval $a ≤ x ≤ b$ and $F$ is an antiderivative of $f$ on $a ≤ x ≤ b$, then:

$$∫↙{a}↖{b} f(x) dx = [F(x)]_a^b = F(b) - F(a)$$

Definite Integral Properties

  1. $∫↙{a}↖{b} kf(x)dx = k∫↙{a}↖{b} f(x)dx$
  2. $∫↙{a}↖{b} (f(x)±g(x))dx = ∫↙{a}↖{b} f(x)dx ± ∫↙{a}↖{b} g(x)dx$
  3. $∫↙{a}↖{a} f(x)dx = 0$
  4. $∫↙{a}↖{b} f(x)dx = -∫↙{b}↖{a} f(x)dx$
  5. $∫↙{a}↖{b} f(x)dx = ∫↙{a}↖{c} f(x)dx + ∫↙{c}↖{b} f(x)dx$
  6. $∫u⋅dv = uv - ∫v⋅du$

Definite Integral Properties

  • Constant Rule: $∫ kdx = kx + C$
  • Power Rule: $∫x^n dx = 1/(n + 1) x^{n+1} + C$, $n ≠ 1$
  • Constant multiple rule: $∫kf(x)dx = k ∫f(x) dx$
  • Sum of difference rule: $∫(f(x) ± g(x))dx = ∫f(x)dx ± ∫g(x)dx$
  • $e^x$ and $1/x$ integrals: $1/{x}dx = lnx + C$, $x > 0$, $∫e^xdx = e^x + C$
  • Linear composition: $∫f(ax + b)dx = 1/{a}F(ax + b) + C$, where $F'(x) = f(x)$

Solutions

Two common methods for solving integrals are:

Substitution: ${dy}/{dx} = {dy}/{du}⋅{du}/{dx}$

Rearranging the equation to obtain the form $∫f(g(x))g'(x)dx$.

An indefinite integral is a family of functions that differ by the constant C. A definite integral is of the form:

$$∫↙a↖b f(x) dx$$

Leibniz invented the ∫ symbol for integration by the 1680s.

$∫↙a↖b f(x) dx$ is read as 'the integral from a to b of f(x) with respect to x'.

If a function $f$ is defined for a ≤ x ≤ b and ${lim}↙{n→∞}∑↙{i=1}↖n f(x_i)Δx_i$ exists, then $f$ is integrable on a ≤ x ≤ b.

This is the definite integral and it is denoted as $∫↙a↖b f(x) dx$, where a and b are the lower and upper limits of integration.

If $f$ is a non-negative function for a ≤ x ≤ b, then $∫↙a↖b f(x) dx$ gives the area under the curve from x = a to x = b.

Have you seen the C?

Definite integrals resolve to a number. This is because the constant C which is in the indefinite integral solution can be cancelled during the procedure of quantifying the definite integral.

The integral of a function
The definite integral from a to b of a function is the area between the curve from a to b and the x-axis.

From the graph of the function $f(x) = 4 - x^2$, determine the integral and use this to calculate the area under the curve from x = -2 to x = +2.

$A = ∫↙{-2}↖{2} f(x) dx = ∫↙{-2}↖{2} (4 - x^2) dx $
$= [4x - {x^3}/3 + C]_{-2}^{2} $
$= (8 - 8/3 + C) - (-8 + 8/3 + C) $
$= 16 - {16}/3 + C - C $
$= {32}/3 $
$= 10.67$ 

Area between two curves

If $y_1$ and $y_2$ are continuous on $a ≤ x ≤ b$ for all x in $a ≤ x ≤ b$, then the area between $y_1$ and $y_2$ from x = a to x = b is given by:
$$∫↙{a}↖{b} (y_1 - y_2)dx $$

Area under the x-axis

The area of a curve is never negative. Therefore, the part of a function which graphs to below the x-axis needs to be calculated separately from the part above the x-axis, and made positive.

If $f(x)$ is negative between $n$ and $p$, the area between the curve of $f(x)$, the x-axis, and the lines $x = n$ and $x = p$ is:

$$|∫_n^pf(x)dx|$$

Area between curves

If functions $f$ and $g$ are continuous in the interval [a, b], and $f(x) ≥ g(x) for the region $a ≤ x /le; b$, the the area between the two graphs is:

$$A = ∫_a^bf(x)dx - ∫_a^bg(x)dx = ∫_a^b(f(x)- g(x)dx$$

Associated Mathematicians:

  • Isaac Newton
  • Gottfried Leibnitz
  • Jakob Bernoulli
  • Johann Bernoulli (I)

Content © Andrew Bone. All rights reserved. Created : February 5, 2015 Last updated :December 13, 2015

Latest Item on Science Library:

The most recent article is:

Air Resistance and Terminal Velocity

View this item in the topic:

Mechanics

and many more articles in the subject:

Subject of the Week

Physics

Physics is the science of the very small and the very large. Learn about Isaac Newton, who gave us the laws of motion and optics, and Albert Einstein, who explained the relativity of all things, as well as catch up on all the latest news about Physics, on ScienceLibrary.info.

Gravity lens

Great Scientists

Jakob Bernoulli

1654 - 1705

Jakob Bernoulli was the first of long series of Bernoulli family members, all mathematicians, whose combined contributions to mathematics and physics is unequalled in history.

Jakob Bernouilli, 1654 - 1705, Swiss mathematician
IT Forum by Sean Bone

Quote of the day...

American hypocrisy is not the biggest hypocrisy in the world, but it is the biggest problem of the world.

ZumGuy Internet Promotions

Umwelt.Science