Science Library - free educational site

Circular and Periodic Functions

The Unit Circle

Mathematics trigonometry principles
Mathematics trigonometry principles
Mathematics trigonometry principles
Mathematics trigonometry principles

Radians

A radian is the size of the angle subtended by an arc the same length as the radius of the circle.

Since the circumference of a circle is 2πr, there are 2π radians in 360°.

One radian is equal to ${360°}/{2π} = 57.2957795°$. Since π is irrational, the radian cannot be expressed exactly in degrees.

Arcs

The length of an arc = $({θ}/{2π})(2πr) = rθ$

This formula assumes the angle is given in radians.

Sectors

The area of a sector = $({θ}/{2π})(πr^2)={θr^2}/2$

where r the radius of the circle, and the sector subtends the central angle θ.

Graphing Circular Functions

Basic trig identities
Mathematics question

Solving equations with the unit circle

If $-2π ≤ x ≤ 2π$, there are a number of solutions to an equation such as: $sinx=1/{√2}$

The first quadrant solution is $π/4$ (45°). However, the sine of $π - π/4 = {3π}/4$, in the second quadrant, is also $1/{√2}$. But also sin${-5π}/4$ and sin${-7π}/4$ give solutions of $1/{√2}$.

If the domain is not limited to one cycle ($-2π ≤ x ≤ 2π$), then sin${9π}/4$, sin${11π}/4$, sin${17π}/4$, sin${19π}/4$, etc. are also solutions. And the periodic function could be extended in the negative direction as well: sin${-13π}/4$, sin${-15π}/4$, etc.

Modelling with Sine and Cosine

A system with periodic motion can be described by an equation. If the motion is simple harmonic or rotational, the equation can be a sinusoidal function of time, t, the starting position, h(0), and a periodic factor. An example is a Ferris Wheel:

$$H(t)=rsin({2π}/T(t-T/4))+(H(0) + r)$$

where T is the period of one rotation, H(0) is the starting height, and r the radius.

Mathematics question

Ferris Wheel Example

$h(t)=60cos({2π}/{30}(t-15))+ 60$

At time $t=0$, the equation reduces to $h(t)=60cos(-π)+ 60 $

$= -60 + 60 = 0$: the starting position is 0.

At time $t=15$, the equation reduces to $h(t)=60cos(0)+ 60 $

$= 60 + 60 = 120$: the height at $t=15$ seconds is 120m. Since the maximum value of cos(x) is 1, this is the maximum height reached.

At time $t=30$, the equation reduces to $h(t)=60cos(π)+ 60 $

$= -60 + 60 = 0$: the height at $t=30$ seconds is once again 0m. The motion is periodic with a period of one cycle of 30 seconds.

Mathematics

General Periodic Motion

Since a sine or cosine can take a value of -1, the zero point is established by $M$ = maximum height.

The angular speed of the motion is described by the argument of the cosine or sine: in our example $({2π}/{30}(t-15))$. In other words, a full cycle (2π radians) is made every $p$ seconds ($p$ = period).

The phase shift, $s$, establishes the starting time.

The general formula for position is:

$$P(t) = M⋅cos({2π}/{p}(t-s))+ M$$

Content © Renewable-Media.com. All rights reserved. Created : April 1, 2015

Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week

Computing

Information Technology, Computer Science, website design, database management, robotics, new technology, internet and much more. JavaScript, PHP, HTML, CSS, Python, ... Have fun while learning to make your own websites with ScienceLibrary.info.

Computer Science

Great Scientists

Ada Lovelace

1815 - 1851

Augusta Ada King, Countess of Lovelace, née Byron (father: Lord Byron the poet), is credited with being the first person to develop an algorithm for machine calculation, making her the first software writer.

Ada Lovelace
IT Forum by Sean Bone

Quote of the day...

Nam et ipsa scientia potestas est (knowledge itself is power)

ZumGuy Internet Promotions

Transalpine traduzioni