Science Library - free educational site

Chain, product and quotient rules

Chain rule

A composite function $y = f(g(x))$ may be differentiated by using the chain rule:

for example, let $y = (3x - 2)^3$.

Let $g(x) = (3x - 2)$, and $f(x) = x^3$.

Let $g(x) = u$, then $y = u^3$.

$${dy}/{dx} = {dy}/{du}⋅{du}/{dx}$$

${dy}/{du} = 3u^2$, and ${du}/{dx} = 3$, so ${dy}/{dx} = {dy}/{du}⋅{du}/{dx} = 3u^2 ⋅ 3 = 9u^2$

∴ ${dy}/{dx} = 3u^2 = 3(3x - 2)^2$

The chain rule can also be written as: $(f o g)'(x) = f'(g(x))⋅ g'(x)$.

Derivatives of Odd and Even Functions

The chain rule can be used to demonstrate that the derivative of an odd function is an even function.

If $f(-x)=-f(x)$, then the function $f$ is odd.

Therefore, $-f'(x) = f'(x)(-1)$, and so $f'(-x)=f'(x)$, confirming that $f'$ is an even function.

And similarly, if $f$ is an even function, its derivative is odd.

If $f$ is even, $f(-x)=f(x)$, and therefore $f'(-x)(-1)=f'(x)$. therefore, $f'(x)=-f'(x)$, confirming that $f'$ is an odd function.

Witches of Agnesi

Maria Agnesi, 1718 - 1799, was an Italian mathematician, who developed a curve orginally discovered by Fermat and Grandi. The series of functions became known as the witches of Agnesi, since their shapes recall witches' hats, and not because of what she might have had brewing in the kitchen.

The witches of Agnesi are of the form $y = {a^3}/{x^2 + a^2}$.

The simplest function, $y = 1/(x^2+1)$, can be differentiated by first converting it to a form with rational exponents:

$f(x) = (x^2+1)^{-1}$

Using the chain rule: $f'(x) = 2x⋅(-1(x^2+1)^{-2}) = -{2x}/{(x^2+1)^{2}}$

Product rule

If a function is a product of two functions, the product rule may be used to find the differential.

If $f(x) = u(x)⋅ v(x)$, then:

$$f'(x) = u(x)v'(x) + u'(x)v(x) $$

For example, if $f(x) = (3x + 2)(2x^2 - 1)$ then:

$f'(x) = (3x + 2)4x + 3(2x^2 - 1) $

$ = 12x^2 + 8x + 6x'2 - 3 $

$ = 18x^2 + 8x -3$

Alternatively, if $y = uv$, then :

$${dy}/{dx} = u{dv}/{dx} + v{du}/{dx}$$

Derivation of Product rule

Let $f(x)=u(x)v(x)$, where $u$ and $v$ are differentiable functions.

$f'(x)={lim}↙{h→0}{u(x+h)v(x+h) -u(x)v(x)}$

$={lim}↙{h→0}{u(x+h)v(x+h) -[u(x+h)v(x) -u(x+h)v(x)] -u(x)v(x)}/h$

$={lim}↙{h→0}[u(x+h){v(x+h)-v(x)}/h + v(x){u(x+h)-u(x)}/h]$

$={lim}↙{h→0}u(x+h)⋅{lim}↙{h→0}{v(x+h)-v(x)}/h $
$ + {lim}↙{h→0}v(x)⋅{lim}↙{h→0}{u(x+h)-u(x)}/h$

$=u(x)v'(x)+v(x)u'(x)$

Second derivative

If $f(x) = uv$, then:

$f'(x) = u'v + uv'$

Then it follows that:

$f″(x) = (u'v)' + (uv')' = (u″v+u'v')+(u'v'+uv″) = u″v+2u'v'+uv″$

The general solution to $f^n(x)$ follows the binomial theorem and is called Leibniz's formula.

Quotient rule

If $y = u/v$, $v(x) ≠ 0$, then:

$${dy}/{dx} = {v(x)u'(x) - v'(x)u(x)}/{(v(x))^2}$$

For example, $y = {x^2 - 1}/{x + 1} = {(x + 1)(x - 1)}/{(x + 1)} = x - 1$. $f'(x) = 1$.

Confirming with the quotient rule: $u(x) = {x^2 - 1}$, so $u'(x) = 2x$, and $v(x) = {x + 1}$, so $v'(x) = 1$

${dy}/{dx} = {v(x)u'(x) - v'(x)u(x)}/{(v(x))^2} = {(x + 1)⋅2x - 1⋅(x^2 - 1)}/{(x + 1)^2} = {(x^2 + 2x + 1)}/{(x + 1)^2} = 1$

Implicit functions

An explict function is one where $y= a_nx^n + a_{n-1}x^{n-1} +.... + a_1x + a_0$

An implicit function is one such as a circle $x^2 + y^2 = 1$, i which y is not explicitly defined in terms of x.

To differentiate an implicit function, differentiate the part with $y$ with respect to $y$, then multiply this by ${dy}/{dx}$, according to the chain and product rules.

e.g. $x^3 + y^3 -2xy^2 = 1$

$3x^2 + 3y^2{dy}/{dx} -2(y^2 + 2xy{dy}/{dx}) =0$

$3x^2 + 3y^2{dy}/{dx} -2y^2 - 4xy{dy}/{dx} =0$

$ (3y^2-4xy){dy}/{dx} =2y^2- 3x^2$

${dy}/{dx} = {2y^2- 3x^2}/{3y^2-4xy}$

Content © Andrew Bone. All rights reserved. Created : January 23, 2015 Last updated :November 6, 2015

Latest Item on Science Library:

The most recent article is:

Air Resistance and Terminal Velocity

View this item in the topic:

Mechanics

and many more articles in the subject:

Subject of the Week

Resources

Science resources on ScienceLibrary.info. Games, puzzles, enigmas, internet resources, science fiction and fact, the weird and the wonderful things about the natural world. Have fun while learning Science with ScienceLibrary.info.

Science

Great Scientists

Ernest Rutherford

1871 - 1937

Ernest Rutherford, 1871 - 1937, was a New Zealand chemist and physicist, who worked in Canada and England. His work pioneered our understanding of the atom.

Ernst Rutherford, 1871 - 1937
Transalpine traduzioni

Quote of the day...

Nonno's explanations always did a round-robin circuit of science - history - philosophy, then back to science. Always back to science. As if it were that that drove the mechanism of time, and not the other way round. And philosophy? Well, that just went along for the ride.

ZumGuy Internet Promotions

SaraOrdine