Science Library - free educational site

Binomial Theorem

Galton Board
Galton Board: classic demonstration of binomial distribution, in which a series of equal outcomes (ball bouncing to left or right of a pin) produces a bell curve

The Galton Board

Sir Francis Galton, 1822-1911, a British mathematician, invented a nifty toy, which demonstrates clearly that a series of pairs of outcomes (ball bouncing to left or right on pins) will produce the pattern known as the binomial distribution.

$$P(X=r)=(\table n;r)p^rq^{n-r}$$

where r = 0, 1, 2, ...., n, and $(\table n;r)$ ≡ nCr, $P(X=r) ≡ P_r$, and $p$ and $q$ are the respective probabilities of outcomes event $p$ and event $q$.

Pascal's Triangle

n = 0                1     
n = 1             1     1
n = 2          1     2     1
n = 3        1    3     3     1
n = 4      1   4     6     4     1
n = 5   1    5    10    10    5     1
....
n = n   $({\table n;0})$   $({\table n;1})$   $({\table n;2})$   ...   $({\table n;{n-2}})$   $({\table n;{n-1}})$   $({\table n;n})$


These are the binomial coefficients of the expansion of any expression to the power of n.

The General Binomial Theorem

$$(a + b)^n = ({\table n;0})a^n + ({\table n;1})a^{n-1}b + ({\table n;2})a^{n-2}b^2 + ... + ({\table n;{n-1}})ab^{n-1} + ({\table n;{n}})b^{n} $$

where $({\table n;r})$ is the binomial coefficient of $a^{n-r}b^r$, and r is any integer from 0 to max. n.

The general term in the binomial expansion of $(a + b)^n$ is: $$T_{r+1} = ({\table n;r})a^{n-r}b^r$$

where $({\table n;r}) = {_n}C_r$.

Example

The fifth row of Pascal's triangle is: 1, 5, 10, 10, 5, 1.

The binomial expansion of $(x+3/x)^5$ is therefore:

$1x^5 + 5(x^4)(3/x)^1 + 10(x^3)(3/x)^2 + 10(x^2)(3/x)^3 + 5(x^1)(3/x)^4 + 1(x^0)(3/x)^5$

$= x^5 + 15x^3 + 90x + {270}/x + {405}/{x^3} + 243/{x^5}$

Coefficients

The General Binomial Theorem may be used to quickly find the coefficient of a specific x term.

For example, the coefficient of $x^3$ in the expansion of $(2x+4)^6$:

$(2x+4)^6$: $a= 2x$, $b=4$, $n=6$

$T_{r+1} = ({\table n;r})a^{n-r}b^r$

$n-r=3$, so $r=n-3=6-3=3$

$T_{4} = ({\table 6;3})(2x)^{3}4^3 = {6!}/{3!3!}2^3x^34^3 = (20)⋅8⋅64x^3 = 10,240x^3$

Mode and Median of the Binomial Distribution

The probability distribution of the random variable $X$ (number of successful outcomes from $n$ Bernoulli trials) is:

$$P(X=r) = (\table n;r ) p^rq^{n-r}$$

$X$ follows a binomial distribution with parameters $n$ and $p$, where $X∼B(n,p)$. The third parameter is $q=1-p$.

The mode of $X$ is where the function has a maximum.

The median of $X$ = $m = {x_1 + x_2}/2$, where $x_1$ is the maximum value for which $F(x_1) ≤ 1/2$ and $x_2$ the minimum value for which $F(x_2) ≥ 1/2$.

If $X ∼ B(n, p)$ then $E(X) = μ = np$ and Var(X) = $σ^2 = npq$, where $q=1-p$.

Content © Andrew Bone. All rights reserved. Created : January 1, 2015

Latest Item on Science Library:

The most recent article is:

Air Resistance and Terminal Velocity

View this item in the topic:

Mechanics

and many more articles in the subject:

Subject of the Week

Mathematics

Mathematics is the most important tool of science. The quest to understand the world and the universe using mathematics is as old as civilisation, and has led to the science and technology of today. Learn about the techniques and history of mathematics on ScienceLibrary.info.

Mathematics

Great Scientists

Werner Heisenberg

1901 - 1976

Werner Heisenberg was a German physicist, and a key member of the 'Copenhagen Interpretation', which proposed an observer-creation understanding of quantum phenomena, based on Niels Bohr's theories and Heisenberg's Uncertainty Principle.

Werner Heisenberg, 1901 - 1976. German physicist and proponent of the Heisenberg Uncertainty Principle.
Lugano English

Quote of the day...

Before I came here I was confused about this subject. After hearing your lecture, I am still confused, but on a higher level.

ZumGuy Internet Promotions

ZumGuy Publications and Promotions