Science Library - free educational site

Binomial Theorem

Galton Board
Galton Board: classic demonstration of binomial distribution, in which a series of equal outcomes (ball bouncing to left or right of a pin) produces a bell curve

The Galton Board

Sir Francis Galton, 1822-1911, a British mathematician, invented a nifty toy, which demonstrates clearly that a series of pairs of outcomes (ball bouncing to left or right on pins) will produce the pattern known as the binomial distribution.

$$P(X=r)=(\table n;r)p^rq^{n-r}$$

where r = 0, 1, 2, ...., n, and $(\table n;r)$ ≡ nCr, $P(X=r) ≡ P_r$, and $p$ and $q$ are the respective probabilities of outcomes event $p$ and event $q$.

Pascal's Triangle

n = 0                1     
n = 1             1     1
n = 2          1     2     1
n = 3        1    3     3     1
n = 4      1   4     6     4     1
n = 5   1    5    10    10    5     1
....
n = n   $({\table n;0})$   $({\table n;1})$   $({\table n;2})$   ...   $({\table n;{n-2}})$   $({\table n;{n-1}})$   $({\table n;n})$


These are the binomial coefficients of the expansion of any expression to the power of n.

The General Binomial Theorem

$$(a + b)^n = ({\table n;0})a^n + ({\table n;1})a^{n-1}b + ({\table n;2})a^{n-2}b^2 + ... + ({\table n;{n-1}})ab^{n-1} + ({\table n;{n}})b^{n} $$

where $({\table n;r})$ is the binomial coefficient of $a^{n-r}b^r$, and r is any integer from 0 to max. n.

The general term in the binomial expansion of $(a + b)^n$ is: $$T_{r+1} = ({\table n;r})a^{n-r}b^r$$

where $({\table n;r}) = {_n}C_r$.

Example

The fifth row of Pascal's triangle is: 1, 5, 10, 10, 5, 1.

The binomial expansion of $(x+3/x)^5$ is therefore:

$1x^5 + 5(x^4)(3/x)^1 + 10(x^3)(3/x)^2 + 10(x^2)(3/x)^3 + 5(x^1)(3/x)^4 + 1(x^0)(3/x)^5$

$= x^5 + 15x^3 + 90x + {270}/x + {405}/{x^3} + 243/{x^5}$

Coefficients

The General Binomial Theorem may be used to quickly find the coefficient of a specific x term.

For example, the coefficient of $x^3$ in the expansion of $(2x+4)^6$:

$(2x+4)^6$: $a= 2x$, $b=4$, $n=6$

$T_{r+1} = ({\table n;r})a^{n-r}b^r$

$n-r=3$, so $r=n-3=6-3=3$

$T_{4} = ({\table 6;3})(2x)^{3}4^3 = {6!}/{3!3!}2^3x^34^3 = (20)⋅8⋅64x^3 = 10,240x^3$

Mode and Median of the Binomial Distribution

The probability distribution of the random variable $X$ (number of successful outcomes from $n$ Bernoulli trials) is:

$$P(X=r) = (\table n;r ) p^rq^{n-r}$$

$X$ follows a binomial distribution with parameters $n$ and $p$, where $X∼B(n,p)$. The third parameter is $q=1-p$.

The mode of $X$ is where the function has a maximum.

The median of $X$ = $m = {x_1 + x_2}/2$, where $x_1$ is the maximum value for which $F(x_1) ≤ 1/2$ and $x_2$ the minimum value for which $F(x_2) ≥ 1/2$.

If $X ∼ B(n, p)$ then $E(X) = μ = np$ and Var(X) = $σ^2 = npq$, where $q=1-p$.

Content © Renewable-Media.com. All rights reserved. Created : January 1, 2015

Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week

Environment

Environmental Science is the most important of all sciences. As the world enters a phase of climate change, unprecedented biodiversity loss, pollution and human population growth, the management of our environment is vital for our futures. Learn about Environmental Science on ScienceLibrary.info.

Environmental Science

Great Scientists

Edward Wilson

born 1929

Edward O. Wilson, born 1929, is an American biologist, who is often known as the 'father of sociobiology' and the 'father of biodiversity'.

Edward O. Wilson, b. 1929, American biologist
Rewewable Media

ZumGuy Internet Promotions

Renewable energy media services