Science Library - free educational site

Acceleration

The acceleration of an object is its change in velocity divided by the time the change takes.

acceleration = change in velocity\time interval:

The graph below might be the change in velocity of a skier who is moving downhill at a constant acceleration:

Graph of velocity/time

The skier starts at time = 0 with a velocity = 0. After 1 second, the velocity is 0.5 m/s. After 2 seconds, the velocity has increased to 1 m/s. For every second, the velocity increases by 0.5 m/s. We can say that the change in velocity is constant and equal to 0.5 m/s every second. This can be written as 0.5 m/s/s, or 0.5 m/s2.

Displacement = Area under the Velocity-Time curve

The area under the velocity-time graph is the displacement. The above graph of constant acceleration forms a triangle between the velocity curve and the time axis. The area of a triangle is half its height times its base: 0.5 x 6 m/s x 12 s = 36m.

Acceleration = Slope of the Velocity-Time curve

The slope of the velocity-time graph is the acceleration. The steeper the slope, the greater the acceleration. To find the slope, choose any two points: slope =

Case Study: traffic lights

Consider the motion of a car between traffic lights:

Animation of car at traffic lights

What would this motion look like in a graph of velocity against time?

Graph of velocity/time

Question: What is the acceleration in the first two seconds?

Answer: initial velocity .
Final velocity .
Therefore,
Using the formula

Note that 30 km/h can be expressed as m/s, by dividing by 3.6

Question: What is the acceleration in the last two seconds?

Answer: initial velocity .
Final velocity .
Therefore,
Using the formula
The acceleration is equal in magnitude to phase A, but opposite in direction (deceleration).

Question: What is the total displacement travelled by the car in the ten seconds?

Answer: the displacement is the area under the velocity curve. This is in three parts, A, B, and C.
First we need to convert 60 km/h into m/s so that the unit of time matches.
60 km/h /3.6 = 16.7 m/s
Area A: 0.5 ⋅ v ⋅ t = 0.5 ⋅ 16.7 m/s ⋅ 2 s = 16.7 m
Area C is the same as A
Area B: in this case, there is zero acceleration, but constant velocity. In this case, we use the formula
Total displacement = total area =

Content © Andrew Bone. All rights reserved. Created : July 13, 2013 Last updated :February 27, 2016

Latest Item on Science Library:

The most recent article is:

Air Resistance and Terminal Velocity

View this item in the topic:

Mechanics

and many more articles in the subject:

Subject of the Week

Mathematics

Mathematics is the most important tool of science. The quest to understand the world and the universe using mathematics is as old as civilisation, and has led to the science and technology of today. Learn about the techniques and history of mathematics on ScienceLibrary.info.

Mathematics

Great Scientists

Edwin Hubble

1889 - 1953

Edwin Hubble, 1889 - 1953, was an American astronomer, who made the physical observations which established the Big Bang Theory and the expansion of the universe in astronomy.

Edwin Hubble, 1889 - 1953, American astronomer
IT Forum by Sean Bone

Quote of the day...

"To be a scholar," said Galileo, "you have got to publish papers - and the best papers have something written on them."

ZumGuy Internet Promotions

Renewable energy media services